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A simple nonlinear scheme for iterative solution of nonlinear convection–diffusion
equation is described. The scheme is tested by solutions of three nonlinear steady-
state model equations and linear nonstationary transport equation. The feature of the
scheme is transition from a second-order accuracy on coarse grids to a first-order on
fine grids. c© 2001 Academic Press

1. INTRODUCTION

In many areas of physics, a flux is determined by diffusion and convection (or drift). The
diffusion coefficient and convection velocity may depend on an unknown variable, which
introduces nonlinearity to the problem. Examples include nonlinear heat transfer problems,
transport of charged species in semiconductors and plasmas, and the Fokker–Plank equation
[1–3].

Recently, it became clear that water transport through the polymer electrolyte membranes
(PEM) obeys a similar equation [4, 5]. The latter problem is of large interest since PEM is
a key component of fuel cells, which are expected to perform revolution in mobile power
sources including vehicles.

The steady-state nonlinear convection–diffusion equation is basically the conservation
law

∇ · N = R, (1)

where the fluxN has a form

N = −D(c)∇c+ U(c). (2)

1 On leave from Moscow State University, Research Computing Center (NIVC), 119899 Moscow, Russia.
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FIG. 1. Computational cell. Black dots are grid nodes; hollow dots denote cell surfaces.

Herec is usually a concentration or number density of species,D is the diffusion coefficient,
U is convective flux, andR represents sources. The numerical solution of (1) and (2) has
been the subject of numerous works (see, e.g., [3, 6] and cited literature therein).

In modeling of semiconductors and gas discharges, a diffusion–drift model is widely used,
which leads to the equation of the type of (1) and (2), with givenD andU(c) =W(r)c,
whereW(r) is a drift velocity. A one-dimensional variant of the flux in the diffusion–drift
model is

N = −D(x)
∂c

∂x
+ v(x)c, (3)

wherev is thex-component of drift velocity. Some thirty years ago, Scharfetter and Gummel
[7] proposed a scheme for the numerical solution of Eq. (1) with the flux (3). Their scheme
is based on the following idea.2

Let a nonuniform grid with the nodes{xi , i = 0, . . . ,M − 1} covers computational do-
main. The computational cell is bounded by the “west” and “east” pointsxW, xE, respec-
tively (Fig. 1). The expression for the flux (3) is considered as the equation forc(x) on the
interval between two adjacent nodes [xi , xi+1]. The coefficients in (3) and the fluxN are
assumed to be constant on this interval and equal to their values at the “east” boundary of
the cell:N = NE, v = vE, andD = DE (Fig. l).

Solving (3) with the boundary conditionc(xi ) = ci and substitutingx = xi+1, c = ci+1

into the solution, one obtains the Scharfetter–Gummel (SG) flux

NSG
E =

vE

exp
(
vEhi
DE

)− 1

[
exp

(
vEhi

DE

)
ci − ci+1

]
. (4)

This scheme was widely used in semiconductor devices simulation [10]. Recently, it was
introduced into gas-discharge physics [11]. A remarkable property of that scheme is that it
gives a monotonic solution [12]. A more accurate adaptive variant of the SG scheme was
offered in [13] and used in modeling of high-voltage breakdown in air [14] .

In this work we present a new scheme for solution of (1) and (2), which employs an
extension of the Allen/Scharfetter–Gummel idea to the nonlinear variant of the convection–
diffusion equation. We expand the functionsD(c) andUx(c) in (2) (Ux is thex-component
of convective flux) near the nodexi , and the resulting equation is then solved on the
interval [xi , xi+1]. This gives expression to the flux, which contains derivatives∂D/∂x
and ∂Ux/∂x. Equation (1) is then solved by iterations, with the derivatives calculated
using values from the previous iteration. Four tests demonstrate the properties of the
scheme.

2 This idea was first offered by Allen [8] in 1955 for fluid dynamics equations and then rediscovered in other
fields (see [9]).
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2. THE PHYSICAL BACKGROUND: WATER TRANSPORT IN MEMBRANE

First, we will construct the scheme for the following simplest physical model. In polymer
electrolyte fuel cell water transport through the membrane is determined by diffusion be-
cause of the concentration gradient and electroosmotic drag [15]. The latter arises due to the
flux of protons through the membrane, which forces water to move in the same direction.

The fluxN of water in membrane is

N = −D(c)∇c+ nd(c)
j
F
, (5)

where D(c) is the diffusion coefficient of water in the membrane,c is the water molar
concentration,nd is the drag coefficient,j is the local proton current density, andF is the
Faraday constant.

The water is neither produced nor consumed in the membrane, and hence the mass
conservation equation reads as

∇ · N = 0. (6)

Both the diffusion and the drag coefficients are proportional to water contentλ, a number
of water molecules per one sulfonic group SO−3 in membrane [15, 16],

D(c) = DTλ(c), nd(c) = n0
dλ(c), (7)

wheren0
d is constant and the factorDT describes the temperature dependence of diffusion

coefficient (hereinafterDT is constant). In polymer electrolyte membranes,λ is a function
of water molar concentrationc [15].

Taking (7) into account, (5) transforms to

N
DT
= −λ(c)∇c+ bλ(c), (8)

whereb = n0
dj/(DT F).3

3. THE SCHEME

3.1. Flux Through the Cell Surface

We start with the one-dimensional variant of (8),

−λ(c) ∂c

∂x
+ bλ(c) = N

DT
, (9)

whereb = n0
d jx/(DT F).

Let the nonuniform grid with the nodes{xi , i = 0, . . . ,M − 1} cover the computational
domain for (9). The distance between adjacent nodes ishi = xi+1− xi . The computational
cell is bounded by the pointsxW andxE, separated by a distance(hi + hi−1)/2 (Fig. 1).

3 In general, current density also depends on water content, so thatb = b(c). This case is considered in
Section 3.2.
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Numerical approximation of the flux through the cell surface is based on the following
idea. Since the cell size is small, the variation ofλ across the cell is not large. We expand
the functionλ(c) near the nodexi :

λ ' λi + qi (x − xi ), qi ≡ ∂λ

∂x

∣∣∣∣
x=xi

. (10)

Substituting (10) for (9) we get

−(λi + qi (x − xi ))
∂c

∂x
+ b(λi + qi (x − xi )) = N

DT
. (11)

Following the idea of Scharfetter and Gummel [7], we consider (11) as ODE with respect
to c(x) on the interval [xi , xi+1], and we assume thatb = bE andN = NE, wherebE and
NE are the values at the “east” cell boundary (Fig. 1). The solution of this equation, subject
to boundary conditionc(xi ) = ci , is

c(x) = ci + bE(x − xi )− NE

DTqi
ln

(
1+ qi (x − xi )

λi

)
. (12)

Substitutingx = xi+1 into (12), we obtain the fluxNE:

NE = − DTqi

ln
(
1+ qi hi

λi

) (ci+1− bEhi − ci ). (13)

Sinceqi depends onc, this is nonlinear flux.
When

qi hi

λi
→ 0,

the logarithm in the denominator of (13) can be expanded, and we get

NE = −DTλi

hi
(ci+1− ci )+ DTbEλi , (14)

which is simply (9) with the calculation of convective term at the nodei (“upwind” scheme).
This expansion is valid if eitherqi → 0 orhi → 0. Note that hereqi = 0 means that both the
diffusion coefficient and the convective flux are constant. In that case, for anyhi , (14) gives
theexactvalue of convective flux and provides a second-order approximation of diffusion
flux, i.e., (14) has second-order accuracy.

However, ifqi 6= 0, then for smallhi the scheme transforms to the first-order (upwind)
one. Below, this property of the scheme is considered in more detail.

3.2. A More General Form of the Flux

A more general form of the flux (9) is

−λ(c) ∂c

∂x
+ bγ (c) = N

DT
, (15)
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that is, dependencies of the diffusion coefficient and the convective flux onc are different.
Expanding bothλ(c) andγ (c) nearxi and takingb = bE, N = NE, we get

−(λi + qi (x − xi ))
∂c

∂x
+ bE(γi + pi (x − xi )) = NE

DT
, (16)

where

qi ≡ ∂λ

∂x

∣∣∣∣
x=xi

, pi ≡ ∂γ

∂x

∣∣∣∣
x=xi

. (17)

Solving this equation and substitutingc = ci+1 andx = xi+1 in the solution, we obtain the
general expression for the flux:

NE = − DTqi

ln
(
1+ qi hi

λi

)(ci+1− bEhi
pi

qi
− ci

)
+ DTbE

(
γi − pi

qi
λi

)
. (18)

As qi tends to zero (constant diffusion coefficient), the flux (18) reduces to

Nq→0
E = lim

qi→0
NE = −DTλi

hi
(ci+1− ci )+ DTbE

(
γi + pi hi

2

)
, (19)

which can also be received directly from (16) withqi = 0.
In the limit of the constant diffusion coefficient, the scheme, hence, always has second-

order accuracy. Indeed, the diffusion flux (first term on the right-hand side of (19)) is
approximated with the centered formula, which gives second-order accuracy on the uniform
grid. The second (convective term) in (19) contains

γi + ∂γ
∂x

∣∣∣∣
i

hi

2
,

which evidently has second-order accuracy. One may expect, that second-order accuracy is
retained for finiteqi .

If qi 6= 0 andhi → 0, the logarithm in (18) can be expanded and we obtain

Nh→0
E = DTλi

hi
(ci − ci+1)+ DTbEγi , (20)

which is a first-order upwind scheme, since the convective term is approximated at the
nodei . The relations (19) and (20) suggest that if the diffusion coefficient is not constant,
accuracy of the scheme changes from second order to first order as the cell size diminishes.
Numerical examples (Section 4) confirm this assumption.

3.3. Model Equation of Water Transport in Membrane

Consider a model equation

∂

∂x

(
−c

∂c

∂x
+ c

)
= 0 (21)
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FIG. 2. Solutions of the model problem (21). Solid line: exact solution; crosses: upwind scheme; circles:
q-scheme. The domain is [ln 2+ 0.001, 1]; uniform grid; number of cells 20; number of iterations 10.

on the intervalx ∈ [0, 1]. We seek the solution of (21) subject to initial conditions

∂c

∂x

∣∣∣∣
x=1

= 2, c(1) = 1. (22)

Equation (21) is a 1D version of (6) and (9), withb = DT = 1 andλ(c) ≡ c. Physically
(21) means that the diffusion coefficient is proportional to the local value of concentrationc.
Initial conditions (22) fix the concentration and flux atx = 1.

The first integral of (21) is

−c
∂c

∂x
+ c = −1, c(1) = 1. (23)

The solution of (23) cannot be expressed in terms of elementary functions. However, there
exists a simple solution of the problem for functionx(c). The equation forx(c) immediately
follows from (23),

(1+ c)
∂x

∂c
− c = 0, x(1) = 1,

with the solution

x = c− ln(1+ c)+ ln 2. (24)

The functionc(x), obtained from (24), is shown in Fig. 2. The feature of that problem is
that below the pointxlim = ln 2, the problem has no solutions. Atxlim, the concentration van-
ishes along with the diffusion coefficient. The transport belowxlim is, therefore, forbidden.

4. NUMERICAL RESULTS

4.1. Problem 1

To demonstrate the properties of the scheme, we slightly reformulate problems (21) and
(22). In practice, the flux atx = 1 is unknown, and the concentrations at the boundaries
are given instead. This leads to the boundary value problem. For test purposes we will
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formulate the boundary value problem for (21), whose solution coincides with the solution
of the Cauchy problem (23). Namely, we will seek the solution of (21) in the domain
[ln 2+ ε, 1], subject to boundary conditions

c(ln 2+ ε) = c0; c(1) = 1, (25)

with ε = 0.001. The small positiveε excludes the pointx = ln 2, with the infinite derivative
∂c/∂x from computational domain. The point with coordinatesx0 = ln 2+ 0.001 andc0 =
0.0453905 lies on the curve (24), that is, the solution of problems (21) and (25) coincides
with the solution of (24).

We introduce grid{xi , i = 0, . . . ,M − 1} in the domainx ∈ [ln 2+ ε, 1]. To solve (21)
numerically, we will use two schemes. The first one, which will be referred to as the
q-schemeis based on (13). Zero divergence means that in every cellNE − NW = 0. Taking
(13) into account we get

−Fm
i−1 cm+1

i−1 +
(
Fm

i−1+ Fm
i

)
cm+1

i − Fm
i cm+1

i+1 = Fm
i−1hi−1− Fm

i hi , i = 1, . . . ,M − 2,

(26)

wherem enumerates iterations,

Fm
i =

qm
i

ln
(

1+ qm
i hi

λm
i

) , (27)

and

λm
i ≡ λ

(
cm

i

)
, qm

0 =
cm

1 − cm
0

h0
, qm

i =
cm

i+1− cm
i−1

hi−1+ hi
(i = 1, . . . ,M − 2).

The “upwind” scheme (14) leads to the same system (26) with coefficients

Fm
i =

λm
i

hi
. (28)

Boundary conditions (25) give two lacking equations fori = 0 andi = M − 1. The relations
(26) along with the boundary conditions form a system of linear equations with a three-
diagonal matrix, which can be solved on each iteration step by the Thomas algorithm.

The solutions are shown in Fig. 2 along with the exact solution (24). It is seen that the
q-scheme provides much better accuracy.

4.2. Problem 2

As a second test, we consider a problem with quadratic dependenceλ = c2,

∂

∂x

(
−c2 ∂c

∂x
+ c2

)
= 0; ∂c

∂x

∣∣∣∣
x=1

= 2, c(1) = 1, (29)

on the intervalx ∈ [0, 1]. The analysis, quite analogous to those in previous section, gives
the implicit solution

x = c− arctan(c)+ π
4
. (30)
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FIG. 3. Solutions of problem (29). Solid line: exact solution; crosses: upwind scheme; circles: q-scheme. The
domain is [π

4
+ 0.001, 1]: uniform grid; number of cells 20; number of iterations 10.

The solution exists on the interval

x ∈
[π

4
, 1
]
;

below

xlim = π

4

the problem has no solutions. The quadratic dependence of diffusion coefficient onc leads
to a faster drop ofc(x) asx→ xlim.

For test purposes, we replace the Cauchy problem (29) with the boundary value problem

∂

∂x

(
−c2 ∂c

∂x
+ c2

)
= 0, c(π/4+ ε) = c0, c(1) = 1, (31)

which has the same solution. Hereε = 0.001, and numerical value ofc0 is obtained from
(30). Solutions of (31), obtained with the q-scheme and upwind scheme, are compared in
Fig. 3. Again the q-scheme gives much better accuracy.

4.3. Problem 3

A third test is the equation with different dependence of diffusion coefficient and con-
vective flux onc:

∂

∂x

(
−c

∂c

∂x
+ c2

)
= 0; ∂c

∂x

∣∣∣∣
x=1

= 2, c(1) = 1, x ∈ [0, 1]. (32)

The solution to that equation is given by

x = 1+ ln
√

1+ c2− ln
√

2, (33)

that is, the solution exists in the domainx ∈ [1− ln
√

2, 1]. We take the computational
domain [1− ln

√
2+ ε, 1], with ε = 0.001. The fluxesNE andNW now are given by (18)
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FIG. 4. Solutions of problem (32). Solid line: exact solution; crosses: upwind scheme; circles: q-scheme. The
domain is [1− ln

√
2+ 0.001, 1]; uniform grid; number of cells 20; number of iterations 10.

and conditionNE − NW = 0 leads to the system

−Fm
i−1 cm+1

i−1 +
(
Fm

i−1+ Fm
i

)
cm+1

i − Fm
i cm+1

i+1

= Fm
i−1

pm
i−1

qm
i−1

hi−1− Fm
i

pm
i

qm
i

hi + qm
i−1γ

m
i−1− pm

i−1λ
m
i−1

qm
i−1

− qm
i γ

m
i − pm

i λ
m
i

qm
i

,

i = 1, . . . ,M − 2, (34)

with coefficients (27). The derivativesqm
i and pm

i are evaluated using centered differences

qm
i =

λm
i+1− λm

i−1

hi−1+ hi
, pm

i =
γm

i+1− γm
i−1

hi−1+ hi
. (35)

The upwind scheme leads to the system

−Um
i−1cm+1

i−1 +
(
Um

i−1+Um
i

)
cm+1

i −Um
i+1cm+1

i+1 = γm
i−1hi−1− γm

i hi ,

i = 1, . . . ,M − 2, (36)

with Um
i = λ(cm

i ), γ
m
i = γ (cm

i ). Boundary conditions (32) close the systems (34) and (36).
The solutions are compared in Fig. 4.

4.4. Accuracy and Rate of Convergence

Table I shows behavior of an error of the numerical solution in all three tests for various
grids. It is seen that doubling of the number of cellsM until M ≤ 160 reduces the error by
a factor of almost 4. On coarse grids, the scheme, therefore, exhibits almost second-order
accuracy. ChangingM from 160 to 320 and from 320 to 640, one obtains only two- to
three-fold decrease in error (two last rows of Table I). This illustrates the transition of the
scheme to first-order accuracy under smallh.

Figure 5 shows the rate of convergence of iterations. It displays nonlinear residual√
1

M

∑
i

(NE − NW)2,
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TABLE I

Error of Numerical Solution
√

1
M

∑
i
(ci−c̄(xi ))2 for Various

Uniform Grids ( c̄ is Exact Solution)

Problem 1 Problem 2 Problem 3

Number of cells Error Factor Error Factor Error Factor

20 3.72× 10−3 — 2.65× 10−3 1 4.45× 10−3 1
40 1.06× 10−3 3.5 7.95× 10−4 3.3 1.29× 10−3 3.45
80 2.36× 10−4 4.5 1.89× 10−4 4.2 2.97× 10−4 4.3

160 6.30× 10−5 3.7 5.36× 10−5 3.5 7.52× 10−5 4.0
320 2.85× 10−5 2.2 2.26× 10−5 2.4 3.02× 10−5 2.5
640 1.07× 10−5 2.7 8.46× 10−6 2.7 1.03× 10−5 2.9

Note.“Factor” is error reduction factor with respect to the grid on the previous row.

HereNE, NW (given by (13) for problems 1 and 2, and by (18) for problem 3) are calculated
with ci ,qi , pi upon completion of the iteration step. In all cases, six to seven iterations are
necessary to reduce the error by three orders of magnitude, although problem 2 exhibits a
somewhat lower rate of convergence.

Figure 6 illustrates the rate of convergence in problem 2 for the two types of grids. First
is the uniform grid, with 20 cells andh ' 0.011 (same as in Fig. 6). The second is an
“exponential” 20-cells gridhi+1 = 2hi , with h1 = 10−6, h20 ' 0.1. It is seen that with the
nonuniform grid, the rate of convergence is not dramatically lower. Just two iterations more
are required to lower the residual by three orders of magnitude, as compared to the uniform
grid.

To accelerate convergence, Newton’s method can be used. However, the convection–
diffusion equations are usually part of a large system of equations. Managing the Newton’s
method for the whole system is a cumbersome procedure, since the physical model fre-
quently needs to be updated, and each time it is necessary to rewrite and reprogram the
Jacobian matrix. The “local” Newton’s method, formulated for each equation separately,
usually does not give essential benefits. Picard iterations are still the “working horse” in
research practice.

FIG. 5. Nonlinear residual
√

1
M

∑
i
(NE − NW)2 as a function of number of iteration. Uniform grid, number

of cells 20. Crosses: problem 1; circles: problem 2; diamonds: problem 3.
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FIG. 6. Nonlinear residual as a function of iteration number for problem 2. Dashed curve: uniform grid;
number of cells 20;h ' 0.011. Solid curve: “exponential” gridhi+1 = 2hi ; number of nodes 20;h1 = 10−6;
h20 ' 0.1. Note that in the case of exponential grid,h20 is 10 times larger thanh on uniform grid.

4.5. Problem 4: Nonstationary Transport Equation

To demonstrate the use of the q-scheme in nonstationary problems, we consider the
simplest convection–diffusion transport equation,

∂c

∂t
+ ∂N

∂x
= 0, N = −D

∂c

∂x
+ vc, (37)

with constantv andD on the intervalx ∈ [0, 1]. Implicit, first order in time, and centered
in space approximation of (37) on uniform grid,{xi = ih, i = 0, . . . ,M − 1} is

ck+1
i − ck

i

τ
+ Nk+1

E − Nk+1
W

h
= 0, (38)

wherek enumerates time level.
SinceD = const, the q-scheme for (38) reduces to (19), with

λi = 1, DT = bE = 1, γi = vci , pi = v ∂c

∂x

∣∣∣∣
i

.

This leads to a following three-diagonal system

−
(

Dτ

h2
+ vτ

h

)
ck+1

i−1 +
(

1+ 2
Dτ

h2
+ vτ

h

)
ck+1

i − Dτ

h2
ck+1

i+1

= vτ

2

(
∂ c̃

∂x

∣∣∣∣
i−1

− ∂ c̃

∂x

∣∣∣∣
i

)
+ ck

i , (39)

where the values̃c on the right-hand side are obtained by iterations.4

For comparison we will use the second-order QUICK scheme [17], which on a uniform
grid may be written as

ck+1
i − ck

i

τ
+ v ck+1

E − ck+1
W

h
− D

ck+1
i+1 − 2ci + ck+1

i+1

h2
= 0, (40)

4 Starting fromc̃ = ck, one has to solve (39) repeatedly, takingc̃ = ck+1 until the residual becomes small enough.
Note that in this processck

i on the right-hand side does not change.
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FIG. 7. Transport of steep gradient. Solid line: initial condition; dashed line: solution, obtained with the
q-scheme on a very fine grid (“exact” solution); dots: results from the q-scheme (circles) and QUICK scheme
(triangles). Uniform grid; number of cells 10; CFL number 0.4; 10 time steps.

where

ck+1
E = 1

2

(
ck+1

i+1 + ck+1
i

)− 1

8

(
ck

i+1− 2ck
i + ck

i−1

)
. (41)

The correction term on the right-hand side of (41) is calculated on thek-layer to retain the
three-diagonal structure of the linear system.

Equation (37) is solved forv = 1 andD = 0.001, which forms a convection-dominated
problem. A functionf (x, t = 0) = 0.5[1+ tanh((x − 0.2)/0.05)] was taken as the initial
condition, which models the steep gradient (Fig. 7). Boundary conditions

c|x=0 = 0,
∂c

∂x

∣∣∣∣
x=1

= 1

were used. The time step was taken to beτ = C min{h/v, h2/D}, with the Courant number
C = 0.4; 10 steps were performed. Note that the scheme (39) is fully implicit and in fact
allows one to perform calculations withC > 1.

Figure 7 shows a comparison of the results. Taking into account the very coarse grid
(10 cells), we conclude that both schemes satisfactorily describe the transport and both pro-
duce a nonphysical valley nearx = 0.3 (Fig. 7). Such a “ripple” is a characteristic feature
of second-order schemes. Although QUICK gives a somewhat less diffusive solution, the
q-scheme produces a smaller valley and better transports median valueC = 0.5 (Fig. 7).

5. DISCUSSION

Transition of the q-scheme from second order on the coarse grid to first order on the
fine grid can be useful in problems with steep gradients. Grid refinement is usually used to
capture the steep gradient. One may expect dumping of nonphysical oscillations in a region
where the grid is fine and where the q-scheme reduces to a first-order scheme.

To dump nonphysical oscillations, one may construct the FCT scheme, based on a com-
bination of first-order (upwind) and second-order (q) schemes. This procedure is described
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in [18]. The FCT scheme, however, utilizes a nonlinear filter, which is cumbersome and
rather time-consuming. An alternative approach is offered in [19], where a linear com-
bination of low- and high-order solutions was constructed to preserve monotonicity of
transported value.

The linear problem (37) was taken to simplify comparison with the popular QUICK
scheme, since in the nonlinear case, the latter would require linearization. However, the
advantage of the q-scheme manifests itself in nonlinear problems: It does not require lin-
earization and hence is easier to implement.

In all tests, the derivatives∂λ
∂x and∂γ

∂x were calculated using direct numerical differentiation
(35). If the analytical formula forλ(c) and/or forγ (c) is known, a more accurate result
gives the product

∂λ

∂c

∂c

∂x

with analytical expression for∂λ
∂c and centered formula for∂c

∂x .

The q-scheme can be easily extended for 2D and 3D problems. The fluxes through the
surfaces of the 3D cell can be written in the form of (18), whereci andci+1 are values
in the adjacent nodes along a given direction. The divergence of total flux∇ · N is then
constructed based on the Gauss theorem, which in Cartesian coordinates has a form

∇ · N ' 1

δPijk

∑
N⊥δS⊥,

whereδPijk is a cell volume,N⊥ is given by (18), andδS⊥ is the respective surface of the
cell. This procedure leads to a system of nonlinear equations with a 5-diagonal matrix.
The coefficients of that system (the derivatives in (18)) are evaluated using values from
the previous iteration. The resulting system of linear equations can then be solved by any
standard procedure.
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